ICOS INTEGRATED CARBON OBSERVATION SYSTEM

An analysis of the GCOS 2016 Implementation Plan from ICOS perspective

SYSTEM FOR CLIM

GCOS-200

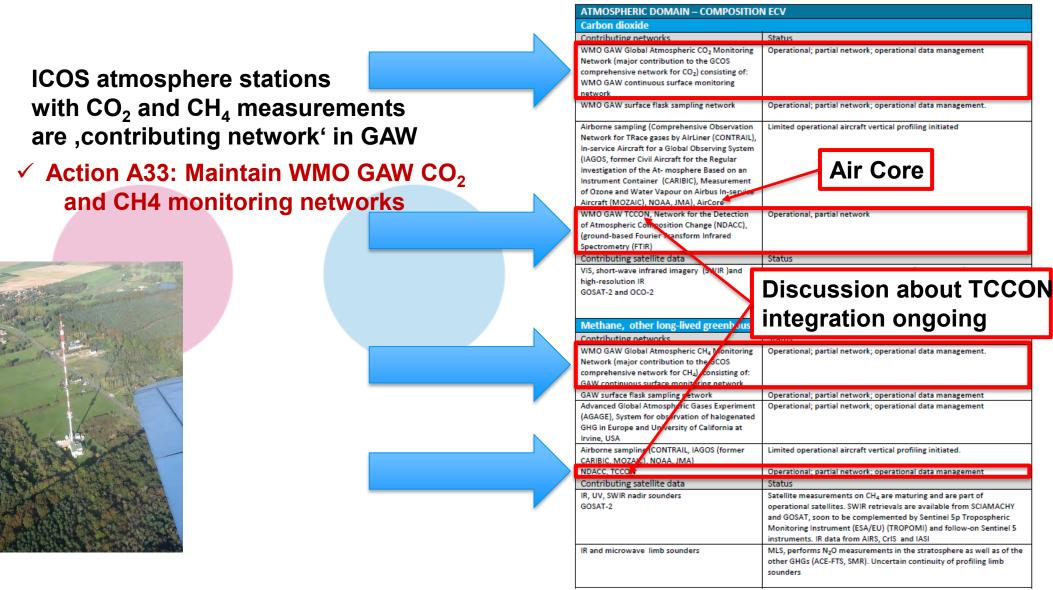
🏽 🛍 🚳 🔶 📖 🧕

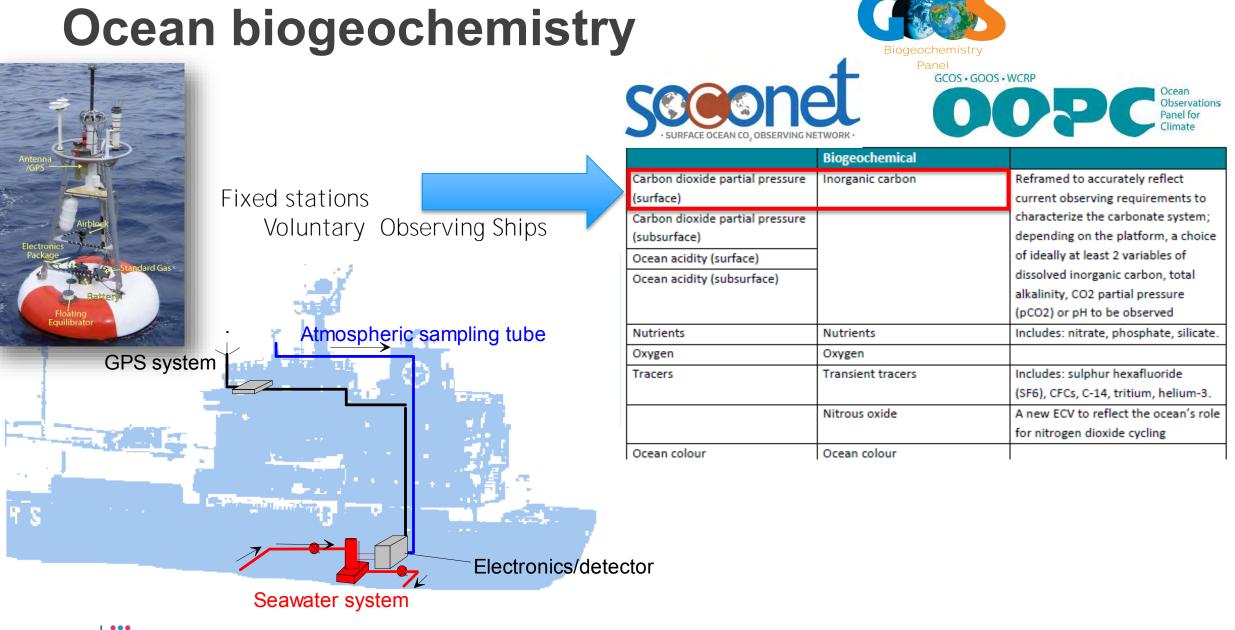
GOOS-214)

Werner L. Kutsch, Director General, ICOS ERIC

Helsinki, 22. October 2018

Part 1: Essential Climate Variables


- The design of ICOS is directly responding to the ECVs in all three domains;
- ICOS has an integrated data life cycle, well established data access through the ICOS Carbon Portal and an open data policy;
- Being a Research Infrastructure, ICOS is inheriting long-term sustainability;
- Becoming operational, ICOS aims to provide stronger support towards GCOS within a global coalition of Research Infrastructures.



Atmosphere composition ECVs

ITEG PATE

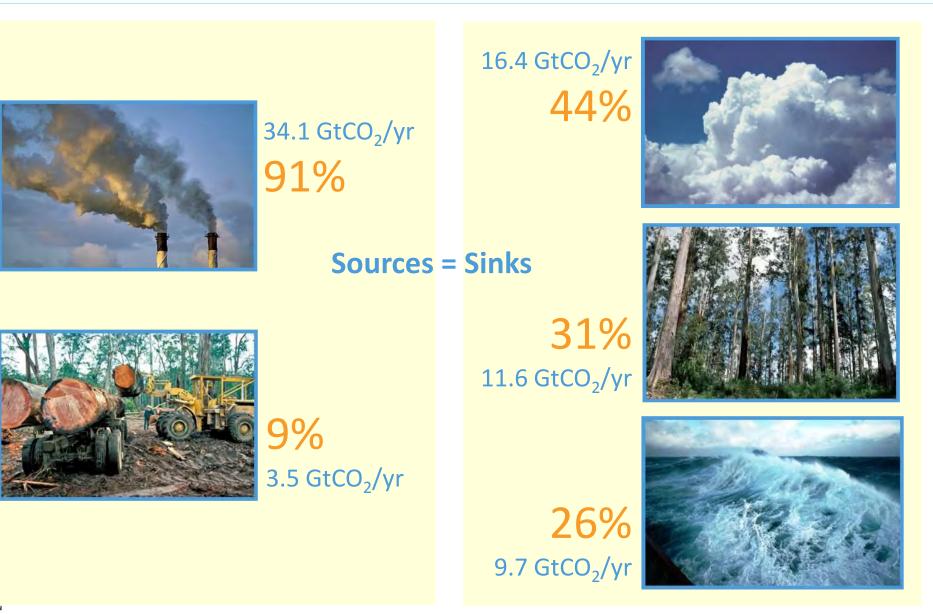
NTEGRATED ARBON OBSERVATION

	Name	Quantities measured	Measurements	Appicable standards	Sources of Data
	River discharge	Mean daily discharge data from all major river basins draining into the world's oceans are required. Measured parameters are: River discharge (m ³ /day) Water level (m) Flow velocity (m/s) Cross-section (m ²)	Satellite microwave altimeters National In situ observations according to WMO standards. GTN-R	ISO/TC 113: WMO (2010) WMO (2008a) WMO (2009)	GTN-R data centre: Global Runoff Data Centre Satellite data centre: Hydroweb at LEGOS/CNES
OGICAL	Groundwater	Groundwater volume change (m ³ /month) Groundwater level (m): Groundwater recharge (m ³ /s): Groundwater discharge (m ³ /s): Wellhead level (m): Water quality	Gravity measurements have been used to estimate changes of groundwater at a very coarse scale globally (about that of the largest aquifers). Satellite gravity missions need to be operationalized. National In situ observations	ISO/TC 147/SC 6 N 120, ISO 5667-18:2001 Part I8	Data centre: International Ground Water Resources Assessment Centre (IGRAC)
HYDROLOGICAL	Lakes	Lake water level (cm) Water extent (m ²) Lake surface water temperature (C°) Lake ice cover (m ²) Lake ice thickness (m) Lake colour (Lake water leaving reflectance)	Satellite microwave altimeters for lake level Multi-spectral optical and thermal sensors for water extent, water temperature, water colour and ice cover SAR for water extent and ice cover National In situ observations according to WMO standards. Global Terrestrial Network- Lakes (GTN-L)	WMO (2006) WMO (2008(a))	Data centre: HYDROLARE Satellite data centre: Hydroweb Copernicus Global Land Service / CEOS, ESA CCI, GloboLakes
	Soil moisture	Surface soil moisture content (m ³ /m ³) Freeze/thaw status (yes/no) Surface inundation (m ²) Vegetation optical depth (dimensionless) Root-zone soil moisture content (m ³ /m ³)	Microwave radiometers, scatterometers and synthetic aperture radars in 1–10 GHz range (L, C and X-band), complemented by medium- resolution optical and thermal sensors International Soil Moisture Network (ISMN) as part of GTN-H	WMO (2008(b))	ESA CCI Soil Moisture Copernicus Climate Change Service

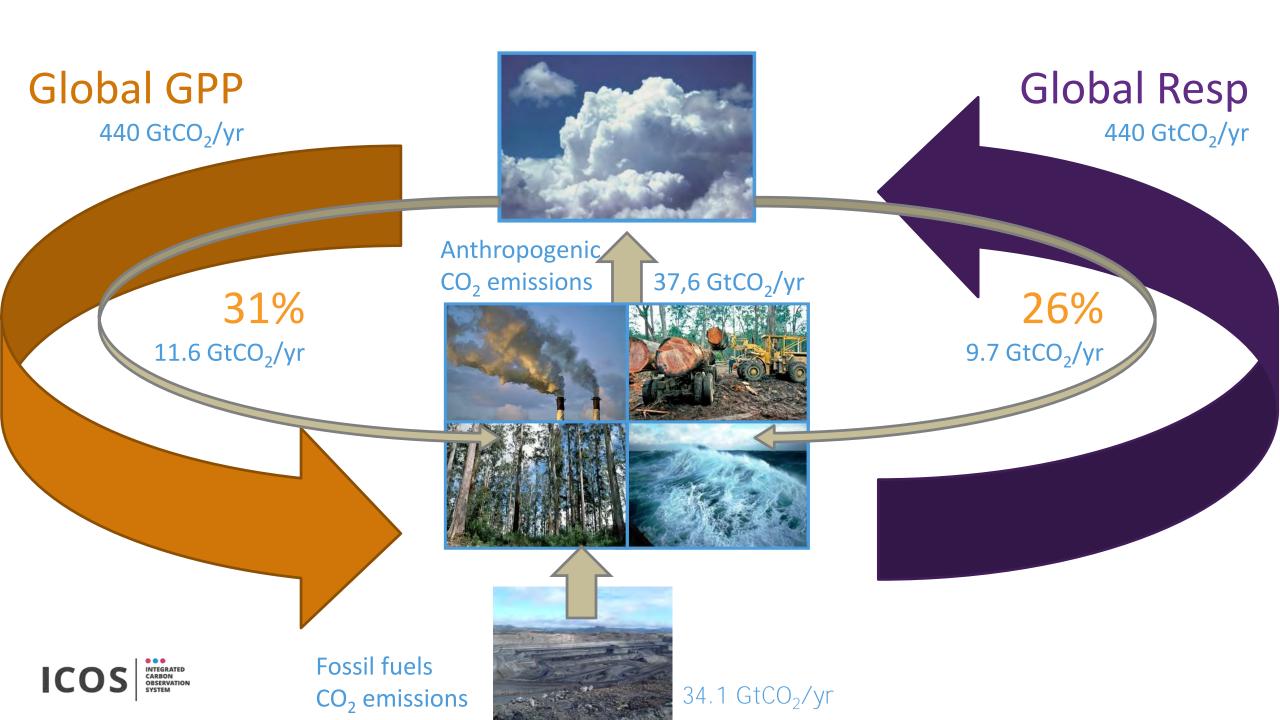
				GCOS	5 • WCRP	
Terrestria				Ţ	M	
Tower based at all sites			(BRF), Reflectance anisotropy (bidirectional reflectance distribution function (BRDF) model parameters), bidirectional hemispherical reflectance under isotropic illumination or white-sky albedo (BHRiso), directional hemispherical reflectance or black-sky albedo (DHR)	Use of operational geostationary satellites (SCOPE-3M Project) and moderate resolution optical polar orbiters (SCOPE-CM-02, MODIS, MISR, VIIRS, AVHRR, Metop, MERIS, Sentinel-3, SPOT-VGT, PROBA-V) In situ data for calibration/validation, Baseline Surface Radiation Network (BSRN) – augmented with International Fluxnet station data CEOS/WGCV/LPV; NASA-Modiand Atmospheric radiation measurement sites	,	Copernicus Climate Change Service, Copernicus Global Land Service, NASA/LPDAAC, EUMETSAT CM SAF, EUMETSAT LSA SAF
Flux data for model calibration	3IOSPHERE		that contributes to photosynthesis.	In situ data for calibration/validation <mark>.</mark> No designated baseline network exists. CEOS WGCV;FLUXNET; TERN,EnviroNet NEON,ICOS		Copernicus Climate Change Service, Copernicus Global Land Service, NASA/LPDAAC, EUMETSAT CM SAF,
Annual courses at all sites			unit ground area	Optical, multi-spectral and multi-angular observations No designated baseline network exists. CEOS WGCV; FLUXNET; Long-term infrastructural networks, e.g. TERN, NEON, ICOS		EUMETSAT LSA SAF Copernicus Climate Change Service, Copernicus Global Land Service, NASA/LPDAAC, EUMETSAT CM SAF, EUMETSAT LSA SAF
		Land-surface temperature		Thermal infrared data data, Copernicus Global Land Service, NASA/LPDAAC, EUMETSAT LSA SAF	[]	
		Land cover (including vegetation type)		10–30 m resolution satellite imagery European Copernicus program and Landsat continuity mission National maps No designated reference network	No agreed standards but see GLCN (2014), GOFC-GOLD (2015a), and LCCS/LCML	ESA LC-CCI, NGCC.

GCOS • WCRP

					GCOS	• WCRP	
Terrestria						A	
Tree height and circumference Ground lidar in test mode	OSPHERE		Above-ground living biomass (excludes roots, litter and dead wood) Forest above-ground biomass (AGB) is sometimes derived using the subsidiary variable forest height.	The growing stock volume (related to biomass by forests has been estimated from long time series relative accuracy of 20-30% at 0.5° resolution. L-band SAR data can be used to estimate forest b JAXA PALSAR-2 is the only L-band SAR currently in Tropical biomass maps have been derived from for the IceSAT lidar which failed in 2009. Three missions dedicated to measuring forest stru- orbit by 2021; the ESA BIOMASS P-band SAR; the Investigation vegetation lidar on the Internationa NISAR L-band radar. The Argentine SAOCOM 1-A Airborne lidar can provide biomass maps at dist No designated baseline network exists. The FAO's Forest Resource Assessments provide of explicit map-type data on forest biomass.	of C-band SAR data (ESA Envisat) with iomass up to about 100 t ha-1, but the n orbit. Drest height measurements made with ucture and biomass are planned to be in NASA Global Environmental Dynamics I Space Station; and the NASA-ISRO Real ground tru	GOFC-GOLD (2015a) GOFC-GOLD (2015b) GFOI (2013) IPCC (2006)	No global data centre for either forest or non-forest biomass.
Repeated stock take Annual carbon balances	ũ	Soil carbon	Fraction of carbon in soil	No satellite sensors. National in situ data. No designated global network major geographica Harmonized World Soil Database (HWSD) National soil carbon surveys New, high-resolution soil data are available - Soil New soil profile data for the world, once shared b WoSIS ⁶⁶ , thereby providing a growing source of in applications.	Grids250m product ⁶³ by the data providers, can be included in	GFOI (2013) IPCC (2006)	


				· · · · · · · · · · · · · · · · · · ·	
	Anthropogenic water use	storage and agricultural or industrial purposes	Areas of irrigated land can be estimated from land-use information; other information		AQUASTAT UN Water http://www.unwater. org/statistics/en/
	Anthropogenic greenhouse gas fluxes		CDIAC, BP, IEA for global estimates, national reporting to UNFCCC	IPCC (2013) GFOI (2014)	National reporting to UNFCCC CDIAC Global Carbon Project
HUMAN DIN		use sectors	Estimated by IPCC methods using statistics and satellite observations of changes in land cover (see ECV land cover and above ground biomass) National reporting to UNFCCC		
-			Improved knowledge on afforestation, reforestation and forest growth rates Direct measurements of fluxes such as FluxNet		Global Carbon Project
		inversions of observed atmospheric composition	Observations of atmospheric composition, in situ and satellite; modelling of atmospheric transport and processes in a data-assimilation scheme GAW, IG3IS, GEOCarbon, ICOS, CEOS Carbon Observations Strategy, Copernicus C3S/CAMS, Global Carbon Project		Global Carbon Project

Direct flux measurements, the core of the ICOS ecosystem measurements are somehow hidden under "Anthropogenic GHG fluxes" with Global Carbon Project as data source.

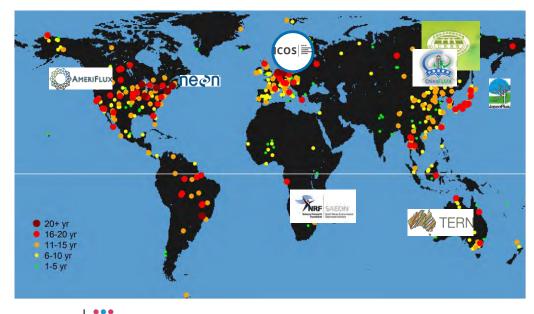


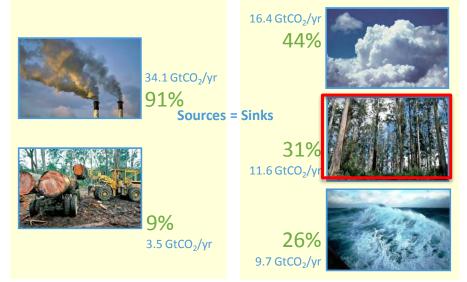
Fate of anthropogenic CO₂ emissions (2006-2015)

ICOS

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016

Suggestion

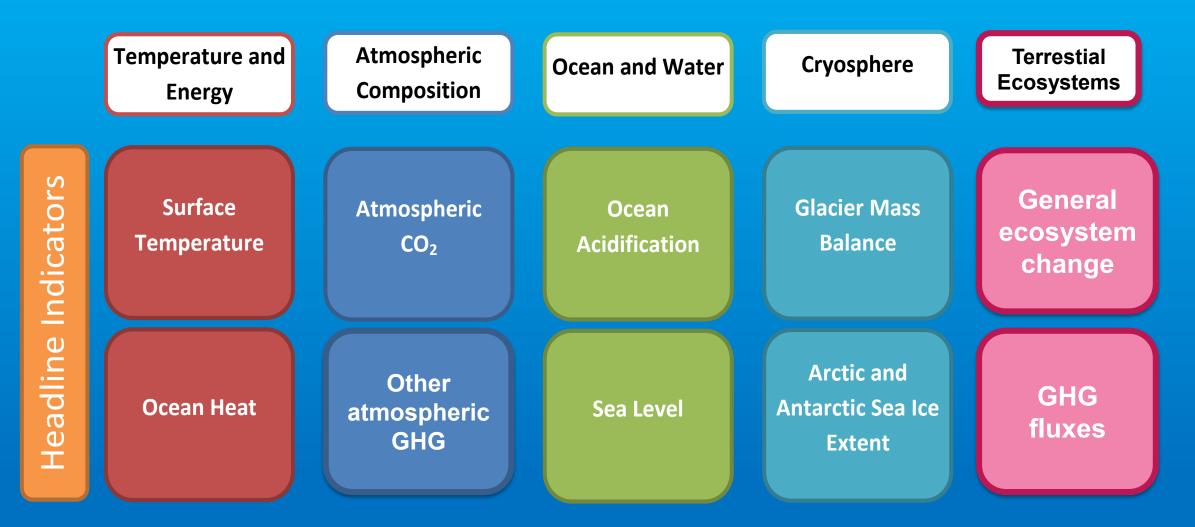

There should be a ECV "Terrestrial CO_2 fluxes" as stand-alone Biosphere ECV (not as a subcategory of Anthropogenic greenhouse gas fluxes in the human dimension)


Rationale

ARBON

Land sink is mainly a natural (biospheric) process that is very vulnerable to climate change and human land management..

Standardized observations conducted by large and sustainable research infrastructures and who also support the integration within fluxnet.



Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 201

Global Climate Indicators

	Temperature and Energy	Atmospheric Composition	Ocean and Water	Cryosphere
Headline Indicators	Surface Temperature	Atmospheric CO ₂	Ocean Acidification	Glacier Mass Balance
Headline I	Ocean Heat	Where are ecosystems and the biosphere?	Sea Level	Arctic and Antarctic Sea Ice Extent

Global Climate Indicators

Two quotes

There is no overall coordination of terrestrial observations: the Global Terrestrial Observing System (GTOS) aimed to do this but is no longer operational. GTOS was set up to provide overall coordination of terrestrial observations, including identifying users' needs, defining observational requirements and coordinating observations across different themes, e.g. climate change, biodiversity loss, preserving ecosystems, agriculture and water. The need for cooperation continues, ...

> GCOS The global observing system for climate: implementation needs, WMO 2016

"

⁷⁷A systems approach is vital when responding to the impacts of climate change. Ecosystem-based approaches can tackle mitigation and adaptation and provide co-benefits for sustainable development. "

> **UNFCCC** Summary report on the tenth meeting of the research dialogue Bonn, Germany, 3 May 2018 Note by the Chair of the SBSTA

Part 2: Actions A quick note about data

✓Action G15: Open data policies

- ✓Action G16: Metadata
- ✓ Action G17: Support to national data centres

ICOS Carbon Portal is a data centre for 12 countries

- ✓ Action G18: Long-term accessibility of data
- ✓ Action G19: Data access and discoverability
- Action G20: Use of digital object identifiers for data records

Part 2: Actions

Action T1:	Improve coordination of terrestrial observations	
Action	Establish mechanism to coordinate terrestrial observations: this will be particularly important for climate change impacts and adaptation where local information will be critical and will not be provided through GCOS directly. It includes biodiversity and natural resources information and could also incorporate socio-economic components (e.g. health) so as to become fine-tuned with post-2015 frameworks. This would be based on discussions with stakeholders and could include a formal framework or regular meetings to exchange ideas and coordinate observational requirements.	
Benefit	Efficient observing systems with minimal duplication, delivering consistent and comparable data to a range of different users	
Time frame	2017: Hold workshops to discuss way forward 2019: Mechanism in place.	
Who	All involved in terrestrial observations. Initially TOPC, GEO, JCSU, GOFC-GOLD, FluxNet NEON	— NEON is only
Performance indicator	Presence of active mechanism	one regional Research
Annual cost	US\$ 100 000–1 million	Infrastructure
	What is the	
	specific role	
	expected from	

expected from GEO?

Part 3: What to be done where by whom and when?

Global coalition of stable Research Infrastructures could improve GCOS particularly in the terrestrial ecosystem domain and work towards a GTOS successor.

Leading global organisation could be GEO.

In this context, ICOS supports the further development of FLUXNET as a main data source for a new ECV on "terrestrial CO_2 fluxes"

THANK YOU FOR YOUR ATTENTION!

Dr. habil. Werner L Kutsch, <u>werner.kutsch@icos-ri.eu</u>, <u>www.icos-ri.eu</u>