

TOPC Terrestrial Observation Panel for Climate

31st Session of the GCOS Steering Committee *Geneva, 2-5/07/2024*

Martin Herold, TOPC Chair

KEEPING WATCH OVER OUR CLIMATE

Ę.

TOPC Membership

	Role Name		Name	Institution	Country	Expertise / ECVs
			Martin	Helmholtz-Centre Potsdam, German Research		
1	TOPC Co-chair	Mr	HEROLD	Centre for Geosciences (GFZ Potsdam)	Germany	AFOLU, IPCC / Biomass, Land Cover
			Andreas	Helmholtz-Centre Potsdam, German Research		
2	TOPC Member	Mr	GÜNTNER	Centre for Geosciences (GFZ Potsdam)	Germany	Hydrology, water storage, soil moisture, gravimetry / Groundwater, TWS
3	TOPC Member	Ms	Claudia RUZ VARGAS	IGRAC - International Groundwater Resources	The Netherlands	Characterisation and management of water resources / Groundwater
Ū		1113				
4	TOPC Member	Mr	MIRALLES	Ghent University	Belgium	Water and heat fluxes and biosphere-atmosphere interactions / Evaporation from Land
			Emilio			
5	TOPC Member	Mr	CHUVIECO	Universidad de Alcala	Spain	Burned area mapping and fire risk assessment / Fire
			Matieu	FAO - Food and Agriculture Organization of the	Italy	
6	TOPC Member	Mr	HENRY	United Nations	(International)	GIS, Carbon Cycle, Forestry / Land Cover, Biomass
			Nadine	IRC - European Commission, Joint Research	Italy	
7	TOPC Member	Ms	GOBRON	Center, Directorate D - Sustainable Resources	(International)	Terrestrial ECVs from in-situ and space / Albedo, EAPAR, LAL
		1110	Nyambilila Abdallah			Soil chemistry and fertility soil organic matter, carbon and nitrogen dynamics in soil especially for
8	TOPC Member	Ms	AMURI	Sokoine University of Agriculture (SUA)	Tanzania	agriculture / Soil Carbon
-			Simon	Global Runoff Data Centre (GRDC), Federal		
9	TOPC Member	Mr	MISCHEL	Institute of Hydrology (BfG)	Germany	Geography, paleoclimatology, groundwater-surface water interactions / River
			Wouter			
10	TOPC Member	Mr	DORIGO	TU WIEN - Vienna University of Technology	Austria	Irrigation and vegetation observations from satellites and ground stations / Soil Moisture
	interim - planning		Hiroyuki			
11	replacement	Mr	ENOMOTO	National Institute of Polar Research	Japan	Snow and ice cover and cryospheric components / Ice Sheets and Ice Shelves
	interim - planning		Jean-François			Satellite altimetry and imagery for Lake water level, extent and volume database under the ESA-
12	replacement	Mr	CRETAUX	CNES / Legos	France	CCI / Lakes
			Colleen	Environment Climate Change Canada, Climate		
13	ex officio GCW	Ms	MORTIMER	Research Division	Canada	Glaciology, Remote Sensing / Snow
			Darren John	University of Leicester, Department of Physics		Satellite observations and modelling of land surface-atmosphere interactions in terms of energy
14	ex officio WGC	Mr	GHENT	and Astronomy	United Kingdom	balance, carbon and water cycles / Land Surface Temperature
4 5				University of Zurich, World Glacier Monitoring		
15	ex officio GIN-G	Ms	GARINER-ROER	Service (WGMS)	Switzerland	Cryosphere, glaciers and permatrost / Glaciers

₽

TOPC - Terrestrial Observation Panel for Climate

In-situ and space-based observations of the terrestrial ecosystems for long-term monitoring of land properties and attributes which:

- i) control the physical, biological and chemical processes affecting climate
- ii) are themselves affected by climate change, are indicators of climate change and provide information on impacts of climate change.

Terrestrial observations

Biosphere Cryosphere Hydrosphere Anthroposphere

TOPC activities Identification of terrestrial observation requirements Supporting observing networks (in-situ, airborne, space-based) observation Guidance on standards and norms Facilitating access to data and information and its assimilation Encouraging the use of best practices

Promoting climate studies and assessments.

GCOS SC-31, Geneva, 2-5 July 2024

20 Terrestrial ECVs (...at present!)

			ECV
			Hydrosphere
R		1	River Discharge
		2	Lakes
		3	Soil Moisture
		4	Groundwater
		5	Terrestrial Water Storage (TWS)
			Cryosphere
×.		6	Snow
C		7	Glaciers
		8	Ice Sheets and Ice Shelves
		9	Permafrost
			Biosphere
		10	Fraction of FAPAR
Le la)	11	Leaf Area Index
e	9	12	Albedo
	Ŋ	13	Above-Ground Biomass
		14	Land Cover
	8	15	Soil Carbon
		16	Fire
		17	Land-Surface Temperature
		18	Evaporation from Land
			Anthroposphere
		19	Anthropogenic Greenhouse-Gas Fluxes
e		20	Anthropogenic Water Use

20 Terrestrial ECVs – 57 quantities

	ECV	ECV Product		ECV	ECV Product
	Hydrosphere	5 ECVs / 15 Products		Biosphere	9 ECVs / 20 Products
	1 River Discharge	River Discharge	10	Fraction of FAPAR	Fraction of Absorbed Photosynthetically Active
		Water Level			Radiation
	2Lakes	Lake Water Level (LWL)	11	Leaf Area Index	Leaf Area Index (LAI)
		Lake Water Extent (LWE)	12	Albedo	Spectral and Broadband (Visible, Near Infrared and
		Lake Surface Water Temperature (LSWT)			Shortwave) DHR & BHR with Associated Spectral
		Lake Ice Cover (LIC)			Bidirectional Reflectance Distribution Function
		Lake Ice Thickness (LIT)			(BRDF) Parameters
		Lake Water-Leaving Reflectance	13	Above-Ground Biomass	Above-Ground Biomass (AGB)
	3 Soil Moisture	Surface Soil Moisture	14	Land Cover	Land Cover
		Freeze/Thaw			Maps of High-Resolution Land Cover
		Surface Inundation			Maps of Key IPCC Land Classes, Related Changes
GCOS • WCRP		Root Zone Soil Moisture			and Land Management Types
	4 Groundwater	Groundwater Storage Change	15	Soil Carbon	Carbon in Soil
		Groundwater Level			Mineral Soil Bulk Density
	5 Terrestrial Water Storage	Terrestrial Water Storage Anomaly			Peatlands
	(TWS)		16	Fire	Burned Area
	Cryosphere	4 ECVs / 13 Products			Active Fires
Cryosphere	6Snow	Area Covered by Snow			Fire Radiative Power (FRP)
Anthroposphere		Snow Depth	17	Land-Surface Temperature	Land Surface Temperature (LST)
		Snow-Water Equivalent			Soil Temperature
	7 Glaciers	Glacier Area	18	Evaporation from Land	Sensible Heat Flux
Distribute		Glacier Elevation Change			Latent Heat Flux
Biosphere		Glacier Mass Change			Bare Soil Evaporation
📖 🥶 🤐 🤐	8 Ice Sheets and Ice Shelves	Surface Elevation Change			Interception Loss
		Ice Velocity			Transpiration
🤠 🕛 🕑 🧓		Ice Volume Change		Anthroposphere	2 ECVs / 9 Products
		Grounding Line Location and Thickness	19	Anthropogenic Greenhouse-	8 products on Anthropogenic CO2, CH4, N2O and F-
	9 Permafrost	Permafrost Temperature (PT)		Gas Fluxes	Gas Emissions + Fluxes (National and Continental level)
Hydrosphere		Active Layer Thickness (ALT)			+ CO2 Emissions/Removals by Land Categories + High-
		Rock Glacier Velocity (RGV)			Resolution Footprint Around Point Sources
			20	Anthropogenic Water Use	Anthropogenic Water Use

TOPC & GCOS IP Actions – an overview

IP Action	Activity / ECVs	Relevant Terrestrial Network
A1: Ensure necessary levels of long-term funding support for in situ networks,		GTN-H, GTN-G, GTN-P, GTN-L, GTN-R, ISMN,
from observations to data delivery		others
A2: Address gaps in satellite observations likely to occur in the near future	Altimetry in the polar regions (Ice sheets); Gravimetry missions (TWS,	GTN-G, other
	Groundwater); Biomass; Global scale ice surface elevation (Glaciers)	
B1: Development of reference networks (in situ and satellite Fiducial Reference	e Albedo, Biomass, FAPAR, Fire, LAI	
Measurement (FRM) programs)		
B2: Development and implementation of the Global Basic Observing Network	Groundwater, Lake, River, Soil Moisture	GTN-H, GTN-L, HYDROLARE, GTN-R, ISMN?
(GBON)		others?
B3: New Earth observing satellite missions to fill gaps in the observing	Develop operational techniques to estimate permafrost extent	GTN-P
systems		
B5: Implementing global hydrological networks	Improve the collection of hydrological observations (Groundwater, Lake,	GTN-H, GRDC/GTN-R, GTN-L, HYDROLARE,
	River, Soil Moisture, TWS). Report on the Anthropogenic Water Use.	GGMN, ISMN, (AQUASTAT)
B9: Improve estimates of latent and sensible heat fluxes and wind stress	Evaporation from Land	
B10: Identify gaps in the climate observing system to monitor the global	several trrestrial ECVs	
energy, water and carbon cycles		
C1: Develop monitoring standards, guidance and best practices for each ECV	several ECVs	
C3: General improvements to in situ data products for all ECVs	several ECVs	
C5: ECV-specific satellite data processing method improvements	Permafrost, Land Cover, Fire, Biomass, Albedo, LAI, FAPAR	GTN-P
D1: Define governance and requirements for Global Climate Data Centres		GTN-H, other
D2: Ensure Global Climate Data Centres exist for all in situ observations of		FLUXNET, GRDC, GTN-G, GTN-P, GTN-R,
ECVs		HYDROLARE, ISMN, SAPFLUXNET, WGMS
D3: Improving discovery and access to data and metadata in Global Climate		FLUXNET, GRDC, GTN-G, GTN-P, GTN-R,
Data Centres		HYDROLARE, ISMN, SAPFLUXNET, WGMS
D4. Create a facility to access co-located in situ cal/val observations and		
satellite data for quality assurance of satellite products		
D5: Undertake additional in situ data rescue activities		
F2: Improved ECV satellite observations in polar regions	Land surface temperatures, Albedo	
F4: Improve climate monitoring in urban areas	terrestrial ECVs that are urban-relevant	
F5: Develop an Integrated Operational Global GHG Monitoring System	Anthropogenic Greenhouse-Gas Fluxes	

TOPC & WMO

TOPC has a unique position under the WMO Earth System Approach:

- Monitoring of climate change and impacts on land
- Land contribution to the Global Greenhouse Gas Watch (G3W)
- Biosphere: no counterparts in WMO
- Cryosphere: GCW is ex-officio member
- Hydrology: TT EarthHydroNet Task Team, INFCOM-3 Decision on Hydrological Data Centers (see following slide)
- GBON expansion to hydrological variables for climate applications

TOPC Responsible for RRR - Rolling Review of Requirements:

- AA 4.2 Hydrological and Terrestrial Climate Monitoring
- AA 5.3 Cryospheric Climate Monitoring

GCOS • WCRP	
TA	PG

WMO - INFCOM decisions on hydrological data centers

INFCOM-3 Decision on the WMO Global Hydrological Data Centers

The following data centers/networks (linked to GCOS/TOPC) were recognized as supporting WMO efforts in hydrological cycle observations.

GRDC – Global Runoff Data Center

GCOS

- IGRAC International Groundwater Resources Assessment Center
- HYDROLARE International Data Center on Hydrology of Lakes and Reservoirs
- ISMN International Soil Moisture Network
- **GTN-H** Global Terrestrial Network Hydrology

Workplan to be developed for registering them as WMO centers. Relevance to:

- Possible GCOS recognition process for global climate data centers
- Action D1 Define governance and requirements for Global Climate Data Centres (see Item 7.3)
- Action D2 Ensure Global Data Centres exist for all in-situ observations of ECVs

TOPC & Hydrology

GBON expansion to hydrological observations

Developing a rationale – in the frame of the TT EarthHydroNet – for expanding GBON to hydrological ECVs for climate application, starting with soil moisture, evaporation, precipitation, and river discharge (other variables can be considered).

This will contribute to the GCOS-IP actions:

- B2: development and implementation of the global basic observing network (GBON)
- B5 implementing global hydrological networks

Gcos cooperation mechanism to support hydrological observations

Considering the soff support to atmospheric observations, gcos sc-30 suggested to use the gcm in support to hydrological observations. TOPC is planning, with the support of germany, a pilot project to support hydrological field stations (e.G. River discharge) and related capacity building in underrepresented regions (probably central asia, i.E. Uzbekistan).

This will contribute to the gcos-ip actions:

GCO

- B5 implementing global hydrological networks
- E3 enhance support for national climate observations

GCO

TOPC Related Networks

GTNs – Global Terrestrial Networks

(born of two parents organizations: GCOS & G Σ S) \rightarrow legacy to TOPC

- GTN-H Global Terrestrial Network for Hydrology OGTN-H
- GTN-R Global Terrestrial Network for River GTN-R
- **GTN-L** Global Terrestrial Network for Lakes (i.e. Hydrolare)
- **GTN-G** Global Terrestrial Network for Glaciers GTN-G
- **GTN-P** Global Terrestrial Network for Permafrost

HYDROLARE

TOPC contribution to GCOS IP Action: A1 - Ensure necessary levels of long-term funding support for in-situ networks, from observations to data delivery (see Item 7.2).

TOPC Related Networks

GTNs – Global Terrestrial Networks - Application for GCOS Network Accreditation

- **GTN-H** Global Terrestrial Network for Hydrology OGTN-H
- GTN-R Global Terrestrial Network for River GTN-R

unesco

Planning to apply as GCOS Affiliated Network

	Network Oversight	Reporting	
GCOS Network	GCOS, oversight by GCOS Network Manager or GCOS panels	Annually to GCOS, represented at GCOS Meetings	
GCOS Affiliated Network	Oversight exists but is not GCOS e.g. OCG for		
GCOS Recognized Network	ocean networks or this is part of the network as in the GTN	Annual report available but no direct reporting to GCOS	

TOPC and GCOS Sponsors

- Hydrology and Cryosphere
- Biosphere missing: TOPC (almost) unique contribution to the WMO Earth System approach

unesco

GC(

Intergovernmental Oceanographic Commission

Not only ocean!

UN 🙆

- UNESCO was GTOS sponsor for the land component
- Hydrology: UNESCO Intergovernmental Hydrological Programme

- CH₄ Emissions Observations
- Climate impacts on Health?
- Hydrology and Cryosphere
- Adaptation

International Science Council

- Data Centers
- ...

- Hydrology
- Cycles
- Fluxes

TOPC external relations

- Natural link with FAO (previous TOPC co-sponsor at the time of GTOS) for land cover, biomass, forestry, agriculture, soil, fire, Aquastat, etc.
- GEO Group on Earth Observations: for land-related observations, GFOI, GEOTREES, GEOGLAM
- CEOS: AFOLU roadmap
- ESA-CCI (14 terrestrial ECVs), Copernicus services (climate, land)
- Countries: global terrestrial earth observations to support national level monitoring and adaptation

TOPC – Conclusions and Challenges

- Unique position: establishment of integrated observing networks (in-situ, satellite, ...) in the terrestrial domain (Biosphere, Hydrosphere ...)
- Key partnerships for space observations: observation/monitoring programs (cal/val networks, Copernicus, ESA, NASA ...)
- Support the terrestrial networks (ideally for all terrestrial ECVs)
- Climate change adaptation (to be decided at this SC) and Mitigation (G3W, i.e terrestrial/biosphere/land use component)
- Climate indicators / ECV Rationalization / Data Centers
- Working on global and national level: adaptation, national GHG inventories, GFOI,
- Engagement with countries on linking ground and space-based climate observations

Thank you!

KEEPING WATCH OVER OUR CLIMATE

ÎÎÎÎÎ

Supported by the European Union

